Физики из коллаборации ATLAS впервые зарегистрировали эффект рассеяния квантов света, фотонов, на фотонах. Этот эффект — одно из старейших предсказаний квантовой электродинамики, он был описан теоретически более 70 лет назад, но до сих пор не был обнаружен экспериментально. Интересно, что он нарушает классические уравнения Максвелла, являясь чисто квантовым явлением. Исследование было опубликовано на этой неделе в журнале однако препринт статьи вышел еще в феврале 2017 года. Подробности о нем сообщал портал «Элементы.ру»
Одно из главных свойств классической максвелловской электродинамики — принцип суперпозиции для электромагнитных полей в вакууме. Он позволяет напрямую складывать поля от разных зарядов. Так как фотоны — это возбуждения полей, то в рамках классической электродинамики они не могут взаимодействовать друг с другом. Вместо этого они должны свободно проходить друг через друга.
Квантовая электродинамика расширяет действие классической теории на движение заряженных частиц с околосветовыми скоростями, кроме того она учитывает квантование энергии полей. Благодаря этому в квантовой электродинамике можно объяснить необычные явления, связанные с высокоэнергетичными процессами — например, рождение из вакуума пар электронов и позитронов в полях высокой интенсивности.
В рамках квантовой электродинамики два фотона могут столкнуться друг с другом и рассеяться. Но этот процесс идет не напрямую — кванты света незаряжены и не могут взаимодействовать друг с другом. Вместо этого происходит промежуточное образование виртуальной пары частица-античастица (электрон-позитрон) из одного фотона, с которой и взаимодействует второй фотон. Такой процесс очень маловероятен для квантов видимого света. Оценить это можно из того, что свет от квазаров, удаленных на 10 миллиардов световых лет, достигает Земли. Но с ростом энергии фотонов вероятность процесса с рождением виртуальных электронов возрастает.
До сих пор интенсивности и энергий даже самых мощных лазеров не хватало для того, чтобы увидеть рассеяние фотонов напрямую. Однако исследователи уже нашли способ увидеть этот процесс косвенно, например, в процессах распада одного фотона на пару более низкоэнергетичных квантов вблизи тяжелого ядра атома.
Увидеть напрямую рассеяние фотона на фотоне удалось лишь в Большом адронном коллайдере. Процесс стал различимым в экспериментах после увеличения энергии частиц в ускорителе в 2015 году — с запуском Run 2. Физики коллаборации ATLAS исследовали процессы «ультрапериферийных» столкновений между тяжелыми ядрами свинца, разогнанными коллайдером до энергий 5 тераэлектронвольт на нуклон ядра. В таких столкновениях сами ядра не сталкиваются между собой напрямую. Вместо этого происходит взаимодействие их электромагнитных полей, в которых возникают фотоны огромных энергий (это связано с близостью скорости ядер к скорости света).
Ультрапериферийные столкновения отличаются большой чистотой. В них, в случае успешного рассеяния, возникает лишь пара фотонов с направленными в разные стороны поперечными импульсами. В противоположность этому обычные столкновения ядер образуют тысячи новых частиц-осколков. Среди четырех миллиардов событий, собранных ATLAS в 2015 году на статистике столкновений ядер свинца ученым удалось отобрать 13, соответствующих рассеянию. Это примерно в 4,5 раза больше, чем фоновый сигнал, который ожидали увидеть физики.
Коллаборация продолжит исследовать процесс в конце 2018 года, когда на коллайдере вновь пройдет сеанс столкновений тяжелых ядер. Интересно, что именно детектор ATLAS оказался подходящим для поиска редких событий рассеяния фотонов на фотонах, хотя для анализа столкновений тяжелых ядер был специально разработан другой эксперимент — ALICE.
Сейчас на Большом адронном коллайдере продолжается набор статистики протон-протонных столкновений. Недавно ученые отчитались об открытии на ускорителе первого дважды очарованного бариона, а еще весной физики коллаборации ATLAS рассказали о необычном избытке событий рождения двух бозонов слабого взаимодействия в области высоких энергий (около трех тераэлектроновольт). Он может указывать на новую сверхтяжелую частицу, однако статистическая значимость сигнала пока не превышает трех сигма.