Как сделать самолеты еще менее прожорливыми?

Реактивная гражданская авиация, во многом определившая облик современного мира, по-прежнему остается источником озабоченности для экологов и поднимает ряд проблем перед авиакомпаниями и авиапромышленностью     

Новое, более «зеленое» поколение лайнеров должно потреблять меньше топлива, производить меньше вредных выбросов и меньше шума — с этим согласны все. Однако достичь всех этих целей одновременно крайне непросто.


Стандартом современной гражданской авиации являются турбовентиляторные двигатели. По сути это разновидность двухконтурного турбореактивного двигателя, общий принцип работы которого достаточно прост. При полете самолета набегающий воздух всасывается внутрь двигателя компрессором низкого давления (имеющего привод от вала турбины). Далее часть воздуха направляется внутрь двигателя и участвует как окислитель в сжигании топлива, а другая часть идет в обход камеры сгорания и вырывается назад через сопло, создавая реактивную тягу.

Реактивную тягу также создает струя раскаленных газов, выходящая из сопла двигателя. Отношение объемов воздуха, прокачиваемых через внешний контур и через камеру сгорания, называется «степенью двухконтурности». Двигатели, у которых степень двухконтурности высока и составляет от 2 до 10, называют турбовентиляторными, а имеющее сравнительно большой диаметр первое колесо компрессора низкого давления — вентилятором.

Новый взгляд

Пока «винтовентиляторы» нового поколения находятся на ранних стадиях проектирования, интерес к ним растет и появляются первые эскизы самолетов, которые будут сконструированы специально под этот тип двигателя. На картинке показан проект Королевского британского общества аэронавтики с двумя двигателями, оснащенными винтами толкающего типа. Год назад авиаконцерн Airbus запатентовал концепцию самолета «с пониженным вредным воздействием на окружающую среду». Эскизы представлены для одно- и двухмоторного вариантов, причем в тексте специально указано, что предпочтение будет отдано двигателям с открытым ротором. Силовые установки будут поставлены над задней частью фюзеляжа (примерно как в британском проекте) на специальную защитную плиту. Она послужит заслоном для шума винтов. На картинке – компьютерная модель винтовентиляторного двигателя с открытым ротором, который разрабатывается альянсом NASA, General Electric и SAFRAN.

Преимущества турбовентиляторного двигателя также хорошо известны. Во-первых, если б? льшая часть реактивной тяги создается продуваемым воздухом, а не реактивными газами, повышается топливная эффективность, а значит, экономичность и экологичность всей силовой установки. Во-вторых, на выходе из сопла (или сопл) холодный воздух смешивается с горячими газами, снижая общее давление смеси. Это делает двигатель менее шумным.

Но совершенству нет предела, и как только цены на нефть, а значит, и на авиационный керосин начинают расти, авиаперевозчики и авиаконструкторы сразу задумываются о том, как бы сделать самолеты еще менее прожорливыми.


Пусть жжет и дует

Одно из направлений поисков — повышение термоэффективности двигателей, то есть увеличение КПД за счет роста температуры и давления в камере сгорания и сопле. Естественный барьер на этом пути — прочность и термоустойчивость конструкционных материалов, из которых делают лопатки турбин, стенки камеры сгорания и сопла, так что прорыв здесь возможен прежде всего благодаря прогрессу в области создания материалов с более оптимальными свойствами.

Другое направление — повышение КПД, а значит, и экономичности двигателя путем увеличения степени двухконтурности. Если на килограмм сожженного топлива мы сможем продуть через двигатель еще больше воздуха, создающего реактивную тягу, но не принимающего участия в сжигании керосина, можно нарастить мощность силовой установки, не увеличивая расход топлива. Или уменьшить расход топлива, сохраняя прежнюю тягу.

Лежащее как бы на поверхности решение — увеличение диаметра вентилятора — имеет серьезные «но». Большой вентилятор повлечет за собой увеличение размера и веса мотогондолы, и тут о себе во весь голос заявят два главных врага авиаконструктора — вес и лобовое сопротивление. На преодоление этих двух факторов потребуется дополнительная мощность двигателя, и может получиться так, что весь экономический эффект от роста степени двухконтурности сойдет на нет. О том, как справиться с этой проблемой, конструкторы думают уже несколько десятилетий.

Вентилятор — на свободу!

В середине 1980-х в небе над калифорнийской пустыней Мохаве можно было видеть очень странный летательный аппарат. Вернее, сам аппарат имел знакомые очертания пассажирского лайнера MD-80, вот только один из его двигателей был обычным «турбовентилятором», а другой имел на заднем конце двухрядный винт. Разумеется, никто бы не пустил такой гибрид в рейс, и над пустыней взлетала и садилась всего лишь летающая лаборатория MD-81, на которой испытывался двигатель GE-36 типа Ultra High Bypass (UHB, ультравысокая двухконтурность), произведенный корпорацией General Electric. Другое название силовой установки — Unducted Fan (UDF, «вентилятор без обтекателя»). Собственно, этим о конструкции двигателя все сказано. Для радикального повышения степени двухконтурности вентилятор значительно увеличили в диаметре, при этом ради снижения веса и лобового сопротивления с него сняли кольцевой обтекатель.

Нетрудно заметить, что в этом случае вентилятор фактически становится воздушным винтом (в случае с UDF- толкающим), а двигатель, который на Западе называют propfan, а в нашей литературе винтовентиляторным, обнаруживает родство со старым добрым турбовинтовым мотором.

COM_SPPAGEBUILDER_NO_ITEMS_FOUND