Физики охладили до основного состояния все осевые колебания двумерного кристалла

Американские физики одновременно охладили до основного состояния все осевые моды колебаний двумерного кристалла, состоящего из 190 ионов бериллия-9: когда охлаждение заканчивалось, заселенность энергетических уровней в среднем была много меньше одного. Для этого ученые использовали «темные состояния» ионов. Таким образом, исследователи установили рекорд по числу одновременно охлажденных мод. Статья опубликована в , кратко о ней сообщает , препринт работы выложен на сайте arXiv.org.


Погрешность большинства измерений ограничена тепловыми колебаниями, поэтому точные приборы необходимо охлаждать до как можно более низких температур. Еще сильнее эти проблемы проявляются в квантовом мире — температурные колебания искажают эволюцию квантовых систем, приводят к их декогеренции и «замыливают» наблюдаемую картину. В частности, тепловые колебания ограничивают число кубитов квантового компьютера. Поэтому физики стараются как можно сильнее подавить колебательные моды квантовой системы и перевести ее в основное состояние.


Один из самых перспективных инструментов в этой области — это лазерное охлаждение. Впервые оптические силы, с помощью которых можно удерживать и охлаждать частицы, обнаружил в конце 1970-х Артур Эшкин, получивший в прошлом году Нобелевскую премию по физике. Несколько лет спустя физики реализовали предложенный Эшкиным метод на практике, научились охлаждать ионы и нейтральные атомы. В настоящее время ученые умеют охлаждать отдельный осциллятор практически до основного квантового состояния, однако подавить тепловые колебания в сложных системах, состоящих из большого числа осцилляторов, до сих пор никому не удавалось. Проблема заключается в том, что традиционные способы охлаждения плохо масштабируются при увеличении числа частиц. Вероятно, дальше всего в этом направлении продвинулась группа под руководством Кристиана Руза (Christian Roos), которой удалось охладить до основного состояния радиальные степени свободы цепочки 18 ионов кальция-40.

Теперь группа исследователей под руководством Елены Йордан (Elena Jordan) улучшила этот результат почти на порядок. Используя ту же технику, что и группа Руза, физики одновременно охладили до основного состояния все осевые моды колебаний двумерного кристалла, который состоял из 190 ионов бериллия-9, пойманных в оптическую ловушку. Такие колебания напоминают колебания мембраны барабана (ионы движутся вверх-вниз), а их число совпадает с числом ионов кристалла. Таким образом, исследователи установили рекорд одновременно по числу одновременно подавленных мод.

Для охлаждения ученые использовали технику электромагнитно наведенной прозрачности. Сначала физики предварительно охлаждали кристалл с помощью эффекта Доплера и спонтанного комбинационного рассеяния. Затем выбирали два низкоэнергетических состояния, резонансная частота которых немного отличалась от частоты лазера, и когерентно связывали их с высокоэнергетическим состоянием. В результате ион кристалла переходил в «темное» состояние, в котором ион не может поглотить фотон лазера. Таким образом, подстраивая параметры лазера, исследователи изменяли профиль поглощения образца. В частности, повышали вероятность переходов, при которых осевые степени свободы теряли энергию, и уменьшали вероятность обратных переходов. Получалось, что средняя энергия осевых мод со временем уменьшается, то есть кристалл охлаждается.

Чтобы измерить температуру мод, ученые связывали поперечные колебания иона с его внутренними степенями свободы (спином), используя оптически-дипольную силу. Для этого физики направляли на кристалл два лазера с нерезонансной частотой и измеряли его отклик. Поскольку наблюдаемое на практике распределение совпадало с теоретическими предсказаниями, ученые могли оценить по нему температуру мод и заселенность энергетических уровней.

В результате ученые получили, что после охлаждения средняя заселенность энергетических уровней была практически нулевой ( ≈ 0,3±0,2). Это указывало на то, что практически все осевые моды колебаний охладились до наименьшей возможной энергии. Кроме того, ученые измерили скорость охлаждения — оказалось, что заселенность уровней падает по экспоненте с периодом около 30 микросекунд. 

Вообще говоря, в двумерном кристалле могут возбуждаться не только осевые, но и «плоскостные» моды колебаний, число которых равно удвоенному числу ионов. Такие колебания тоже несут энергию, и для полноценного охлаждения кристалла их нужно подавлять наравне с осевыми модами. Тем не менее, исследователи пренебрегли модами, лежащими в плоскости кристалла, поскольку они не используются при квантовых вычислениях или сверхточных измерениях. В частности, авторы статьи утверждают, что кристалл с охлажденными осевыми модами более эффективно моделирует модель Изинга.


За последние два года физики сделали несколько интересных открытий, связанных с лазерным охлаждением. Например, в январе 2017 исследователи из Национального института стандартов и технологий (США) впервые «заморозили» макроскопический предмет — оптомеханический «барабан» — до состояния с энергией ниже стандартного квантового предела. Для этого ученые использовали сжатый свет. В июле 2018 американские физики теоретически показали, что при лазерном охлаждении двухуровневых атомов часть испускаемых фотонов переходит в состояние бозе-конденсата, свойства которого отличаются от обычного фотонного газа или излучения абсолютно черного тела. В августе американские ученые научились охлаждать облака молекул с помощью «темных» состояний и установили рекорд температуры и плотности для таких облаков. Наконец, в ноябре физики из Йельского университета впервые охладили звуковую волну — систему фононов, которые двигались в кремниевой трубочке. Для этого ученые светили в трубочку инфракрасным лазером.

COM_SPPAGEBUILDER_NO_ITEMS_FOUND