Шестое G: какой будет связь будущего

Сети 5G только начинают развертываться, однако за ними уже проступают контуры следующего поколения мобильной связи.

Прошедший 2019-й можно назвать «годом 5G». В апреле консорциум 3GPP, который разрабатывает спецификации мобильной связи, выпустил 15-й релиз, описывающий стандарты нового поколения, и сети стали развертываться по всему миру. Уточнение параметров 5G еще продолжается, и в 2020–2021-м должны появиться релизы 16 и 17, которые завершат описание 5G, доведя его до условного уровня «5++». Тем временем гонка к новому поколению 6G уже началась.


В марте 2019 года в финском Университете Оулу состоялась первая встреча консорциума 6G Flagship. Вуз, который выступает ключевой научно-исследовательской базой компании Nokia, возглавил работу над сетями следующего поколения. А в ноябре официальный старт разработкам технологий 6G дало и правительство Китая. К ним уже подключились все основные производители телекоммуникационного оборудования, и следующая встреча 6G Flagship должна состояться в марте 2020-го.

«Вопрос о 5G можно считать в целом закрытым на уровне релиза 15, – рассказал нам руководитель лидирующего исследовательского центра (ЛИЦ) Сколтеха Виталий Шуб, который принимает непосредственное участие в работе над новым поколением связи. – Спецификации определены, технологии созданы, идет промышленное производство оборудования. Китайские заводы выпускают под сотню тысяч базовых станций в месяц». Пора думать о том, как будет выглядеть связь 6G.

Вечный цикл

Телекоммуникационная инфраструктура использует сети двух принципиально различных типов. Сети с фиксированным ресурсом – такие, как, например, проводное подключение по медному, коаксиальному или оптоволоконному кабелю, – напрямую соединяют абонента с каким-либо портом оператора, который гарантирует определенную пропускную способность этого канала. Выделенная связь предназначена персонально для пользователя, как водопроводная труба, подведенная к крану в доме.

В отличие от них сотовые сети по определению являются сетями с делимым ресурсом. Их спецификация гарантирует определенную скорость передачи к общему пулу абонентов и от них только между ними и базовой станцией. Однако итоговая скорость обмена данными зависит от числа подключенных абонентов, от емкости сети и других факторов. «По сути, мобильная связь по 4-е поколение включительно – это уникальный бизнес, который может предоставлять сервис без каких-либо гарантий его качества, – говорит Виталий Шуб. – Более того, с этим ничего не поделать: такая особенность вытекает из самой "физики" сети, из ограниченности ее ресурса, который делится между всеми пользователями».

В результате каждое следующее поколение сотовой связи проходит одни и те же характерные этапы. Первое время после появления новой технологии абонентов в такой сети не слишком много и доступные им скорости по-настоящему высоки. Однако затем сеть начинает заполняться, в ней становится все больше и пользователей, и требовательных приложений. В результате скорости падают и возникает потребность во внедрении новых технологий и нового поколения связи. Практика показывает, что такая смена занимает около 10–12 лет.

«Бизнес развивается "по пиле": постепенное насыщение сетей завершается появлением следующего поколения связи, которое ослабляет эту нагрузку, – объясняет Виталий Шуб. – Сперва появляется предложение, оно рождает спрос на новые возможности. Но затем все меняется: возникший спрос требует нового предложения, новых технологий для его удовлетворения. Сотовые операторы просто вынуждены постоянно расширять сеть и улучшать ее характеристики».


Между пятым и шестым

Каждое следующее поколение сотовой связи можно связать с переходами к новым, все более сложным принципам кодирования сигнала. Первые из них использовали системы с частотным разделением (FDMA) – это простейший подход, при котором доступ к общему каналу разделяется между пользователями за счет временного выделения им определенных частот. Следом получили распространение технологии TDMA, позволяющие нескольким абонентам использовать один и тот же канал, деля его короткими интервалами времени.

Потом был внедрен множественный доступ с кодовым разделением (CDMA и WCDMA), который дает дополнительные возможности параллельного использования частот. Сигнал при этом модулируется специальной кодирующей последовательностью, для каждого абонента своей. Антенна базовой станции передает запутанный, похожий на шум сигнал, но каждый конечный получатель, зная свой код, способен выделить из него нужную для себя часть.

Затем был реализован множественный доступ с ортогональными несущими (OFDMA), при котором каждая несущая частота, в свою очередь, разделяется на множество поднесущих, модулируемых независимо друг от друга. Сегодня и этот подход приближается к своему теоретическому пределу. «Для каждой технологии существует предельная спектральная эффективность, то есть число бит в секунду, которые может передать 1 Гц радиоволны, – объясняет Виталий Шуб. – Пятое поколение приближается к 30–50 бит/с·Гц, почти полностью используя возможности математического аппарата кодирования. Это и дает огромную пропускную способность: добавьте сверхширокую полосу несущей, и вы получите цифры от 100 Мбит/с до 1 Гбит/с, а в некоторых случаях даже и 20 Гб/с».

Ожидается, что связь 6G достигнет уже от 100 Гбит/с до 1 Тбит/с, а скорость отклика сети – менее миллисекунды. Точные требования к стандарту еще не сформулированы, однако предполагается, что именно такие цифры понадобятся для работы беспилотного транспорта, сложных систем искусственного интеллекта и виртуальной реальности, роботизированной промышленности и логистики. Достижение нужных показателей потребует использования новых частот, новой математики и даже физики.

COM_SPPAGEBUILDER_NO_ITEMS_FOUND