Фантом со скальпелем: ученые работают над созданием «электронной глины»

С тех пор как в 1991 году Томмазо Тоффоли и Норман Марголус придумали термин «программируемая материя», от теории к практике уже сделаны первые шаги. Вероятно, вспомнив о глине, из которой Господь Бог слепил первого человека, группа исследователей обещает нам в будущем «электронную глину», из которой можно будет слепить почти всё что угодно.

Редкий технический проект со времён первых шагов космонавтики так подстегивал фантазию журналистов и футурологов. Немногие конструкторские идеи могли бы заставить нас настолько поверить в реальность техно-кошмара «Трансформеров» или в материализацию призраков, сошедших прямо с экрана. Картины будущего рисуются одна одной заманчивей. К занемогшему полярнику (буровику, космонавту, Индиане Джонсу-2050) вызывают врача. Дело происходит, естественно, там, куда обычная карета скорой помощи будет ехать вечность, если вообще доедет. А помощь нужна немедленно. В распоряжении больного только компьютер, к которому подключено очень странное периферийное устройство, больше всего напоминающее корыто с песком. Широкий спутниковый канал связи соединяет зимовку, лагерь или космическую станцию с кабинетом светила медицины. Нет-нет, господин профессор из Нью-Йорка или Токио вовсе не готов по первому зову долга мчаться в аэропорт или на космодром. Да это и не нужно. Ведь сейчас произойдёт маленькое чудо. Песок в корыте начинает волноваться, шевелиться, вздыматься грудами, кажущимися поначалу бесформенными, и, наконец, превращается в человеческую фигуру. Внешним видом «песочный человек» (как тут снова не вспомнить про Голливуд и его комикс-сагу о Человеке-пауке) ничем не отличается от маститого доктора, находящегося за тысячи и тысячи километров. Фигура точно повторяет все движения врача, лицо один в один воспроизводит мимику, да и рукопожатие восставшего из пыли фантома достоверно передаёт мягкость и упругость человеческой ладони. Двойник доктора, конечно же, не ограничивается визуальным осмотром больного. Перкуссия, пальпация, аускультация — руки фантома работают в унисон с манипуляциями столичного эскулапа. Увы, диагноз оказался серьёзнее, чем ожидалось. Потребуется хирургическое вмешательство. И опытный доктор готов резать пациента дистанционно. Разумеется, с помощью двойника, возникшего из корыта. Если же выяснится, что не хватает хирургических инструментов, то их придётся «материализовать» на месте — запас волшебного песка еще имеется...


«По-вашему, это неинтересно?» — спросил доктор Мортимер Шерлока Холмса, окончив чтение легенды о проклятии рода Баскервилей. «Интересно для любителей сказок», — ответил великий сыщик. Не правда ли, после рассказа о фантомном хирурге эти слова так и вертятся на языке? Но в Университете Карнеги-Меллон (Питсбург, США) есть люди, которые не просто верят, что рано или поздно такие сказки станут реальностью, но уже сегодня работают над технологиями, благодаря которым суперматериал будущего однажды войдёт в нашу жизнь.

Осязаемые данные

Уже шесть лет группа визионеров-исследователей под руководством адъюнкт-профессора Университета Карнеги-Меллон Сета Голдстайна и директора исследовательской лаборатории компании Intel в Питсбурге Тодда Маури ведёт разработку одного из самых интересных направлений в области модульного роботостроения.

Стоя в одном ряду с другими проектами создания модульных роботов, замыслы группы исследователей из Университета Карнеги-Меллон выделяются своим наиболее революционным подходом и оригинальной идеологией. Речь здесь идёт не просто о сборке специализированного робота из простейших типовых модулей, но о появлении уникального «интеллектуального» материала, способного воспроизводить осязаемые и даже движущиеся трёхмерные образы практически любых твёрдых объектов. Такой материал открывает дорогу к новому типу электронной коммуникации, который позволит подключать к восприятию передаваемых по цифровым сетям образов ещё одно чувство — осязание. Человек сможет взаимодействовать с этими образами как с предметами материального мира и даже как с живыми существами.

Волшебный песок, о котором шла речь в начале этой статьи, станет, по мысли разработчиков, не чем иным, как массой роботов-модулей субмиллиметровых размеров. Каждый из этих модулей будет, однако, пригоден к выполнению нескольких важных функций. Он станет одновременно движителем, приёмником-передатчиком цифровых данных, проводником электропитания и сенсором. В идеале для создания максимально реалистических образов воспроизводимых объектов поверхность модуля покроют микроскопическими светодиодами, которые исполнят роль светящихся пикселей, в своей совокупности пригодных для получения цветовых текстур.

Планарные катомы

По окружности в шахматном порядке расположены электромагниты. Возможно, что в будущем, когда катомы примут сферическую форму и субмиллиметровые размеры, модули будут взаимодействовать не с помощью электромагнитов, а благодаря силам электростатического притяжения/отталкивания.


Название для материала, состоящего из модульных роботов, и для всего проекта по-английски звучит как Сlaytronics, от английских слов clay (глина) и electronics (электроника). Самому модульному роботу авторы проекта дали имя catom (катом; от claytronics и atom).

Как же выглядит сегодняшний этап работы над проектом Claytronics? Даже сами отцы-основатели признают: до передачи на расстоянии движущихся трёхмерных образов ещё очень и очень далеко. Пока ведутся исследования в области базовой конструкции катомов, способов и алгоритмов их взаимодействия, для чего применяются макромодели, работающие в двухмерном поле координат. Плоскостные (планарные) катомы — это цилиндрические устройства с диаметром сечения 45 мм, поставленные вертикально и передвигающиеся по ровной поверхности. Как видно, до песчинок пока далеко, да и число катомов в сборках исчисляется единицами.

При этом один из ключевых терминов научных публикаций группы Сета Голдстайна — слово «масштабируемость» (scalability). Имеется в виду, что разрабатываемые сегодня конструкции катомов и технологии их взаимодействия в сборке позволят в будущем легко и безболезненно изменить масштаб всей модульной системы при сохранении её управляемости и работоспособности. Катомы примут субмиллиметровые размеры, число модулей в сборке возрастёт до тысяч и миллионов, а сама система будет спроецирована из плоскости в трёхмерное пространство.

Пузырящиеся роботы

Интерес к конструкции робота, который будет едва различим невооружённым глазом, понятен, и всё же Сет Голдстайн и его коллеги не устают повторять: «железо» — ещё не самое сложное. Куда более серьёзный вызов — это программные алгоритмы как управления системой в целом, так и взаимодействия между отдельными катомами. Одна из важнейших проблем модульного роботостроения вообще и проекта Claytronics в частности — управление большим множеством модулей, каждый из которых обладает низкой энергооснащённостью и невысоким вычислительным потенциалом. Традиционный метод создания алгоритмов движения для мно"

COM_SPPAGEBUILDER_NO_ITEMS_FOUND